

On delimiting video rebuffering for

stream-switching adaptive applications

Piotr Wiśniewski, Andrzej Beben

{p.wisniewski, a.beben}@tele.pw.edu.pl

Warsaw University of Technology

Warsaw, Poland

Jordi Mongay Batalla, Piotr Krawiec

jordim@interfree.it, p.krawiec@itl.waw.pl

National Institute of Telecommunications

Warsaw, Poland

Abstract— Most of the current adaptation algorithms assess

download rate, or trace playout buffer occupancy to adapt video

representation. We propose a novel approach for switching video

representation based on the estimated probability of video

rebuffering. This probability is calculated using an analytical

model of playout buffer and measured segment download time

characteristics. The results of simulation experiments and

prototype trials, carried out in a controlled network environment

and over the Internet, show that our method efficiently

accommodates changing network conditions.

Index Terms— DASH, HTTP streaming, media adaptation,

queueing models, stream switching

I. INTRODUCTION

 Video streaming constitutes a significant and fast growing

part of Internet traffic. As a consequence, we observe a

proliferation of adaptive streaming solutions designed for

optimising user experience in time-varying conditions of the

Internet. Currently, the most commonly investigated and

commercially applied approach for adaptation is

stream-switching. It is applicable to HTTP, allows to minimize

server processing power and it is video codec agnostic [1]. This

approach is exploited both in closed commercial solutions like

Adobe Dynamic Streaming , Apple’s HTTP Adaptive Live

Streaming and Microsoft’s ISS Smooth Streaming, and in open

HTTP-based protocols like DASH (Dynamic Adaptive

Streaming over HTTP) [2].

The main idea behind the stream-switching adaptation is to

continuously select the highest possible video representation

quality that ensures smooth playout in the current downloading

conditions. This selection is performed on-the-fly during video

playout from a pre-defined discrete set of available video rates

and with a pre-defined granularity (accordingly to video

segmentation). In general, the highest quality representation

should be chosen, the rate of which is lower than the currently

available download rate (with tolerance corresponding to

playout buffer length).

The majority of stream-switching solutions select the video

representation the rate of which best matches the estimated

download bandwidth, e.g. [3], [4]. However this approach is

not optimal as it may lead to an overly aggressive or an overly

conservative adaptation when the download rate significantly

varies [5]. We argue that in order to optimise user experience,

we should select the best possible representation that assures a

delimited and negligible probability of video freezing during

playout (caused by video rebuffering).

In this paper, we propose a novel approach for

stream-switching adaptation which aims at assuring probability

of video rebuffering to sustain under given negligible threshold

while simultaneously optimising the video representation

quality. Our Adaptation & Buffer Management Algorithm

(ABMA) is an example of this approach. Based on the

proposed model of the client’s buffer, ABMA estimates the

probability of rebuffering for the available video

representations and selects the highest quality video

representation which satisfies the assumed threshold.

Moreover, it adjusts the buffer size to compensate for the

download rate oscillations. The input data for our adaptation

algorithm are the segment download time characteristics (SDT)

measured during playout.

The paper structure is the following. After the analysis of

stream-switching solutions (section II), we present the model

of the client’s buffer jointly with its extensive validation

(section III). Section IV presents the details of the proposed

ABMA method. We have implemented the ABMA mechanism

and integrated it with VLC DASH plug-in [6]. The results of

experiments performed in controlled network conditions and

over the Internet are described in Section V. Finally, Section

VI shortly summarizes the paper and gives an outline of further

works.

II. RELATED WORK

Handling variable network conditions is one of the most

challenging issues of the research on stream-switching adaptive

protocols. The application detects changes of network

conditions by measuring the download rate or by observing the

variations of the playout buffer occupancy. The latter approach

is relatively new and rarely covered in literature. Only Huang,

Johari and McKeown proposed this approach for introducing a

new adaptation algorithm [5].

In contrast, there are many papers available about the

bandwidth estimation for video adaptation. The approaches

have evolved and refined successively. In [7], Seo and

Zimmermann proposed to estimate the bandwidth based on the

measurements taken in a short period of time (a few segments)

instead of measurements of the whole streaming in order to

reduce the influence of the network variation on the

representation selection. Along the same line, the authors of [8]

8495

and [9] proposed history based and machine-learning-based

approaches for TCP throughput prediction.

Other studies were focused on reducing the network

bandwidth variation on the client’s side. For example, some

changes in TCP [10] and additional stability techniques [11],

[3], [4] were proposed, respectively, to avoid bursts and to

increase the stability in the available bandwidth. Moreover, the

use of multiple connections was studied for improving the

throughput and reducing the variation of the available

bandwidth in the network [12-15].

The research undertaken in the last two years focuses on the

design of robust adaptive video algorithms for multiple

players competing at bottleneck links [16-20]. This

competition may provoke a biased feedback loop effect

causing high bandwidth variations [21]. Moreover, player

selecting the higher quality representation observes the higher

bandwidth [16].

DASH [2] is an open standard which is gaining the

principal place in the market of stream-switching protocols.

The majority of DASH implementations use fixed buffer size

(e.g., QTSamplePlayer, which uses libdash3.0 library [22],

and VLC player with DASH plug-in [6]). The exception is

dash.js [23], which sets the buffer size according to content

duration and the Round Trip Delay. Nevertheless, the buffer

size is not adjusted taking into account changes of download

rate.

We designed ABMA to simultaneously adapt to both short

and long-term network bandwidth variations. Short-term

variations are diminished by adjusting the length of client

buffer to current downloading conditions. At the same time,

long-term network bandwidth changes are handled by

switching video quality. This double adaptation is another

novelty in our proposition.

III. MODEL OF CLIENT’S BUFFER

The content downloading process in stream-switching

adaptive systems involves three interacting elements: end

user’s player application with stream-switching client, a

content server and a network. The stream-switching client

selects a video representation, requests new video segments

and downloads them over TCP until there is space in the

client’s buffer. Simultaneously, the player application fetches

data from the client’s buffer into its decoding buffer at

variable rate following decoding/playout process.

In order to dimension the client’s buffer, two partially

opposite requirements should be taken into account. On one

hand long buffer inhibits correct adaptation and, on the other

hand, too short buffer may provoke rebuffering during

playout. Therefore, we aim to derive the minimum size of the

client’s buffer that will ensure that the probability of

rebuffering during playout is below the assumed threshold .

A. The model of client’s buffer

The system state can be rendered by the number of

segments waiting in the client’s buffer or played out with the

number of segments being downloaded. The total number of

segments in the system is determined by the client’s buffer

size increased by one segment being in service because the

client requests a new segment from the server only if there is

space available in the client’s buffer. When the client’s buffer

becomes full, the content downloading process is deferred

until the playout of the current segment is finished. After

downloading has resumed, the next segment arrives to the

client buffer at the Round Trip Delay (RTD) time. The RTD is

the time elapsing between the moment of segment requesting

and its receiving. Taking into account the fact that the system

state does not change during deferring periods, we can model

our system by the GI/D/1/K queuing system with a generic

independent random arrival process, deterministic segment

service time (Ω) and finite buffer space, as presented in Fig. 1.

Fig. 1: The model of client buffer

We model the segment arrival process by a discrete random

variable A(Ω), which describes the number of segment arrivals

observed during the service time Ω. This random variable

(r.v.) reflects the compound characteristics of the content

download process by merging together the impact of the

variable segment size, the varying segment transmission delay

on the server and the fluctuating network conditions. In our

model, we assume that the number of segments arriving in

consecutive time slots Ω is independent. This assumption is

satisfied for memoryless arrival processes, as e.g. Poissonian.

For other types of processes, the number of arrivals in a given

time slot Ω time is impacted by the residual Segment

Download Time (SDT)1 remaining from the previous time

slot. The exact estimation of the residual time distribution

seems unfeasible because r.v. A(Ω) is not known a priori in

the system operating over the Internet. Fortunately, we may

neglect the impact of the residual SDT because it would lead

to underestimation of the arrival process (as long as SDT is a

non-negative r.v.). As a consequence, we expect that the

buffer size calculated by our model may be overestimated.

The segments stored in the client’s buffer are served in

constant time intervals Ω, which correspond to the segment

playout time. The finite buffer space directly corresponds to

the limited number of segments being in progress in the

original stream-switching adaptive system.

In our approach, we observe the system immediately after a

segment has finished its service (service time equal to Ω). In

these time instants, the system state is expressed by the

number of segments left behind just served customer. We

denote the steady state probabilities of the system by P0, P1,…,

PK. Note that the probability P0 is directly related to the

rebuffering events, because it corresponds to the situations

when there is no segment for playing out. The probability PK

is equal to zero because we observe the system just after a

1 SDT is the time that a segment takes to be received by the client (i.e. time

interval in which the client receives all the data packets carrying a segment).

A(W)
s
e
g

W s
e
g

s
e
g

K segments

8496

segment has finished service. Our analysis follows the

imbedded Markov chain approach, where the probabilities of

particular system states P0, P1,…, PK-1 can be formally written

as the set of equations presented in (1). Pr{A(Ω)=a} is the

distribution of r.v. A(Ω), i.e., the probability that during time

Ω, exactly number a of new segments arrives to the client’s

buffer.

{

𝑃0 = (𝑃0 + 𝑃1) × Pr{𝐴(𝛺) = 0},

⋮
𝑃𝑛 = 𝑃0 × Pr{𝐴(𝛺) = 𝑛} +

 +∑ 𝑃𝑛+1−𝑎 ×𝑛
𝑎=0 Pr{𝐴(Ω) = 𝑎}, 𝑛 = 1,… , 𝐾 − 2

∑ 𝑃𝑗
𝐾

𝑗=0
= 1.

 

The first equation corresponds to the situation where no

segment is left in the client’s buffer just after the completion

of the service of the previous segment. This happens when the

buffer has been empty or has held just one segment and no

segment has arrived during Ω service time. The second row

describes a set of K-2 equations corresponding to n-th

segments remaining in the client’s buffer for n=1,…, K-2. The

last equation is a normalisation condition.

The solution of the equations (1) allows to calculate the

rebuffering probability for a given size of the client’s buffer.

However, our objective is to derive the minimum size of the

client buffer that will ensure that the probability of rebuffering

during playout is below the assumed threshold . Therefore,

we apply a binary search procedure to find the required buffer

size.

The value of K calculated in our model corresponds to an

open loop system, while the original stream-switching

adaptive system requested segments from the content server

arrive after RTD. Therefore, we need to increase the buffer

size by the number of segments required to compensate the

latency introduced by the feedback control loop between the

client and server. So, the final value of the buffer size B is

given by (2):

 𝐵 = 𝐾 + ⌈
𝑅𝑇𝐷

Ω
⌉ 

B. Validation experiments

In order to validate the model of the client buffer, we simulate

the content downloading system under stationary, controlled

network conditions and compare the obtained rebuffering

probability with the value calculated by our model (P0). In both

cases, we assume the same buffer size, which was fixed to

guarantee the rebuffering probability at the level below 10-4

threshold. Moreover, we consider essentially different

distributions of SDT to evaluate accuracy of the model. Please

note that it is difficult to assess the actual distribution of SDT

because it depends both on the video characteristics (related to

different video coding and content dynamic) and on the

network and server conditions. Therefore, we use two distinct

distributions: exponential distribution, which is memoryless

and characterises high variation; and folded normal distribution

with coefficient of variation (CV) between 1.0 and 0.5, which

reflects relatively smooth content downloading conditions.

Moreover, we assume segment’s playout time (Ω) equal to 2s.

To achieve high reliability of results, each simulation run

covered 5×108 segments and was repeated 20 times with an

independent run-up. The details of the assumed SDT

characteristics and buffer size as well as the obtained

rebuffering probabilities are presented in Table 1.

Table 1: Validation of buffer model under different segment download time

characteristics

SDT characteristics Buffer

size [seg.]

Prob. of video rebuffering

[x10-5]

Dist. Mean [s] CV Calculation Simulation

E
x
p
o

-

n
en

ti
a

l

1.33

1.0

10 5.66 5.690.04

1.50 14 5.64 5.620.04

1.80 33 8.71 8.740.13

F
o
ld

ed
 N

o
rm

al

1.33

1.00 9 6.54 1.050.03

0.75 7 5.65 1.720.03

0.50 4 3.75 0.330.01

1.5

1.00 14 5.52 0.830.21

0.75 10 5.86 1.560.07

0.50 6 3.26 1.710.03

1.8

1.00 37 8.93 0.740.047

0.75 24 9.79 3.380.066

0.50 14 9.89 0.750.03

The results show that the proposed model yields the exact

results for exponentially distributed SDT. For the folded

normal distribution of SDT, P0 values obtained from

simulations are lower than calculated by our model. This effect

stems from the fact that we neglect the impact of residual time

in segment arrival process. As a consequence, the distribution

of r.v. A(Ω) is underestimated and our model overestimates the

required buffer size. Anyway, this feature is acceptable as it

leads to conservative buffer dimensioning rules estimating the

upper limit of K. Moreover, we can observe that the buffer size

increases together with the increase in the value of CV. This

effect results from the fact that the system needs a larger buffer

space to compensate increasing SDT variations.

C. Evaluation of buffer management

The objective of this experiment is to evaluate the

relationship between the SDT characteristics and the required

buffer size computed by the buffer model. Therefore, for

distinct distributions of SDT (exponential and normal), we use

our model to calculate the buffer size ensuring that the

probability of video rebuffering does not exceed 10-4. In order

to understand better the impact of the mean value of SDT, we

use the over-rate factor (ovrate), which normalizes the mean

SDT value to the segment duration time Ω as indicated in (3):

 ovrate = (
Ω

mean SDT
− 1) 

Fig. 2 presents the relation between the required buffer size

and the SDT characteristics expressed by the over-rate factor.

The results show that a large buffer size is required when the

segment download rate is similar to the video playout rate and

when the variance of SDT is high (high value of CV). The

buffer size can be reduced by increasing ovrate factor, i.e., by

switching the stream to a lower quality representation.

Moreover, we can observe that the system may become

unstable when the ovrate factor decreases below 15%. In these

8497

conditions even small fluctuations of ovrate cause significant

changes in the buffer size. Therefore, we have designed an

adaptation logic directed to keep the stream-switching client in

the overrate state (ovrate between 25-75%) to make it robust to

download rate changes and uncertainty of SDT estimation.

Fig. 2: Buffer size as a function of ovrate factor under different values of CV

IV. ADAPTATION & BUFFER MANAGEMENT ALGORITHM

We propose the Adaptation & Buffer Management

Algorithm (ABMA) as an example to prove that adaptation

based on rebuffering probability is feasible. ABMA adapts the

video representation quality and buffer size to the current

downloading conditions based on the queuing model presented

in Section III.A. It exploits SDT and RTD characteristics

measured by the DASH client. Each SDT value results from

the concatenation of the downloaded segment’s size with the

current network and server loads. A sample of N recently

measured SDT probes is used to estimate distribution of r.v.

A(Ω). Such sampling introduces the estimation delay that

needs to be compensated by DASH buffer in the case of a

non-stationary downloading conditions (non-stationary time

series of SDT values). The maximum value of this latency is N

times higher than RTD (when N segments are sequentially

requested and downloaded). Nevertheless, since downloading

conditions rarely change rapidly in a non-stationary manner

(with respect to N), usually a smaller compensation is enough.

Consequently, equation (2) is superseded by eq. (4) in order to

accommodate the number of segments required to compensate

estimation latency.

 B = K + ⌈γ × N ×
RTD

Ω
⌉ , γ ∈<

1

N
,
N+1

N
> 

The parameter 𝛾 reflects nonstationarity of the segment arrival

process (the lower and upper bounds of 𝛾 correspond

respectively to the stationary and “highly” non-stationary

conditions). Our preliminary studies showed that the value of

0.3 is sufficient for a wide variety of networks, including Wi-Fi

IEEE 802.11 networks.

A. ABMA, assumptions and procedure

The aim of ABMA is to determine, from the set R of the

available representation rates, the highest possible media

representation rate rx and the corresponding client buffer size

Bx ensuring the video rebuffering probability 𝑃𝑥
0(𝐵𝑥) to be less

than the given threshold . We assume that DASH buffer size

is a priori limited to a user-defined value M (e.g. due to the

terminal’s memory capacity or the maximum acceptable

adaptation delay). As a consequence, the aim of ABMA is to

find the highest representation as in (5):

 max (rx ∈ R): Px
0(Bx) < ε and Bx < M (5)

Fig. 3: Simplified flowchart of ABMA

Fig. 3 presents the main steps of the searching procedure.

Having measured new SDT and RTD probes (step S1 in

Fig. 3), ABMA updates measurement data (step S2) and

calculates the buffer size 𝐵𝑖 for the most recently determined

representation (ix), step S3. The 𝐵𝑖 value is computed under

the condition 𝑃𝑖
0(𝐵𝑖) < ε (this is described in the following

paragraphs). Next in S4, ABMA checks if the determined

value of the buffer size is legitimate. If not, the representation

is sequentially decremented2 until 𝐵𝑖 gets legitimate, steps

S5b, S6b. Otherwise, ABMA sequentially increments2 the

representation under the condition that the corresponding

buffer size is lower than (1 − β) × M. The anti-oscillation

parameter β is introduced in order to avoid representation

swinging. It balances the frequency of representation

switching against playout quality (its tuning is beyond the

scope of this paper).

We set the size of the client’s buffer according to the

calculated value 𝐵𝑥 to reduce the adaptation delay and

resource usage comparing to buffer size fixed to M. ABMA

determines the representation of the next segment to be

requested and the current buffer size every time a new

segment is downloaded from the server. At these moments,

DASH management logic measures the current values of RTD

and SDT. Nevertheless, if needed, the calculation may be

performed more rarely to limit power consumption (this issue

is not in the scope of our paper).

The calculation of the minimum buffer size 𝐵𝑖 (steps S3,

S5a/b in Fig. 3), for each representation i, is based on the

estimated distribution r.v. Ai(Ω), and RTD. Since the equations

in (1) and (4) allow to compute the rebuffering probability for

arbitrary buffer size, ABMA exploits binary-search-like

2 By incrementing/decrementing representation we mean selecting next
representation with closest higher/lower representation rate.

0

5

10

15

20

25

30

35

40

45

0% 25% 50% 75% 100%

B
u

ff
er

 s
iz

e
[s

eg
m

e
n

ts
]

OVrate factor

Exponential, CV=1.0

Normal, CV=1.0

Normal, CV=0.75

Normal, CV=0.5

Normal, CV=0.25

Upward
adaptation

loop

START
new SDT &
RTD probes)

i  x
calculate Bi

Bi MYES
Bx  Bi

increment i
calculate B i

(*)

 Bi (1-β)×M

YES

x  i, Bx  Bi
(*)

NO

END

NO

YES

NO

Downward
adaptation

loop

Bi is computed under

the condition: P0(Bi) < 

(*)

i

decrement i
calculate B i

(*)
x  i, Bx  Bi

Bi M
S6b

S5b

S0 S1

S3

S4
S5a

S6b

S7b

calculate RTD
update SDT sample

S2

save x

return rx, Bx

S8

S9

S10

8498

algorithm in order to find its minimum value ensuring 

(i.e. 𝑃𝑖
0(𝑏) < ε for 𝑏 ≥ 𝐵𝑖 , 𝑃𝑖

0(𝑏) ≥ ε for 𝑏 < 𝐵𝑖).
The RTD value is assessed by means of Exponential

Weighted Moving Average (EWMA) algorithm based on the

measured RTD probes (S2 in Fig. 3). The distribution of r.v.

Ai(Ω), for each representation i, is estimated based on the

measured SDT probes. Since each SDT probe corresponds to a

representation of the downloaded segment, to estimate Ai(Ω)

for other representations we scale the measured SDT values by

quotient of rates of the considered representations

(𝑠𝑑𝑡𝑗 = 𝑟𝑗/𝑟𝑖 × 𝑠𝑑𝑡𝑖 , 𝑠𝑑𝑡𝑖 denotes SDT probe value

representation i). Such estimation introduces negligible error

as long as the set of probes is large enough to get averaging

effect.

We may express the distribution Pr{A(Ω)=a} by equation

(6) if we assume that: 1) SDTs are described by an

independent and identically distributed r.v. S, 2) 𝑠 > 0 for 𝑠 ⊂
𝑆, and 3) the residual time from the previous Ω period is

described by r.v. Y. The independency (of S) assumption is

justified since SDTs are barely correlated being relatively long

in comparison with the packet download times and, in

addition, the segments have variable sizes and the size is not

correlated between two different segments.

Pr{𝐴(𝛺) = 𝑎} =

{

 Pr{𝑌 > Ω} , 𝑎 = 0

∫ Pr {𝑌 + 𝑆 +⋯+ 𝑆⏟
𝑎−1

Ω

0

= 𝜏} × Pr{𝑆 > Ω − 𝜏} 𝑑𝜏,

 𝑎 = 1,… ,∞

 (6)

The first equation in (6) corresponds to the situation when

the residual time is greater than Ω, so no segment arrives in

time Ω. The following equations describe the situation when

exactly a segments arrive in time Ω. Considering each Ω, the

first segment arrives after the residual time defined by r.v. Y.

The next a-1 segments must arrive within the current slot,

while the last segment must arrive after the end of the slot.

These segments arrive following r.v. S. After some algebra,

we derive the simplified formula (7) for Pr{A(Ω)=a}.

Pr{𝐴(Ω) = 𝑎} = {
1 − 𝐹𝑌(Ω) , 𝑎 = 0

𝐹𝑌+𝑆+...+𝑆⏟
𝑎

(Ω) − 𝐹𝑌+𝑆+...+𝑆⏟
𝑎+1

(Ω) , 𝑎 = 1,… ,∞ (7)

where FY denotes the cumulative distribution function of Y.

In order to derive FY, let us consider an exemplary

realization of segment arrival process presented in Fig. 4.

Fig. 4: Illustration of segment arrival process

Random variable Y equals y if and only if the sum of the

residual time coming from the previous slot Ω and the SDTs

of all segments downloaded in the current slot Ω, equal τ,

whereas the SDT of the next segment will equal Ω-τ+y.

Therefore, FY is the integral (over all possible values of τ and

y) of the sum of probabilities of all events corresponding to

segment arrivals starting from a single segment, up to an

infinite number of segments, as presented in (8):

FY(y) =

∫ ∫ ∑ Pr {Y + S +⋯+ S⏟
a−1

= τ} × Pr{S = Ω − τ + t}∞
a=1

Ω

0
dτdt

y

0



In the case of r.v. S having memoryless property (i.e.

exponential distribution), formulas (6) and (7) are easy to

calculate. Nevertheless, since each SDT is composed of a

number of packet download times, r.v. S tends to a normal

distribution. As a consequence, we numerically calculate

Pr{A(Ω)=a}. Specifically, the management logic performs the

following steps: 1) it computes sample mean µ and variance

2 of the measured SDTs3, 2) it assumes that SDT is described

by normal r.v. X~(µ, 2) and generates a number4 of random

values according to S: s1,…,sn, 3) it calculates consecutive

values of A(Ω) by counting numbers of s1,…,sn falling into

consecutive Ω slots, and 4) computes Pr{A(Ω)=a} by dividing

the number of occurrences of A(Ω)=a by the total number of

values of A(Ω).

V. PROTOTYPE AND EXPERIMENTS

We developed a prototype of ABMA to prove the

feasibility of rebuffering-probability-based approach. The

prototype was implemented in C++ as a piece of software that

can be integrated into a variety of video applications or other

solutions. Moreover we integrated it with 1) a developed

simulator of stream-switching system in order to easily analyse

the properties of ABMA, see section V.A, and 2) a popular

VLC media player to test ABMA’s behaviour in the real-life

Internet environment, see section V.B. The

AdaptationManager class implements ABMA procedure,

presented in Fig. 3, and defines methods responsible for: i)

addition of the measured SDT and RTD probes, ii) invocation

of ABMA procedure, and finally iii) request for optimal

representation rate and buffer size. The prototype’s source code

is publicly available on the web page:

http://www.nit.eu/offer/research-projects-products/abma

For all experiments described in the following subsections

we used the default setting of parameters, explicitly: target

video rebuffering probability 𝜀 equal to 10-4, SDT sample size

N equal to 50 probes, nonstationarity factor 𝛾 equal to 0.3, and

anti-oscillation factor 𝛽 equal to 0.9. We performed the

experimental studies to verify if ABMA: 1) selects optimal

representation, 2) is able to compensate for the variability of

SDT, 3) responds properly to changes of downloading

conditions, and 4) prevents buffer depletion during content

playout.

A. ABMA analysis in controlled simulated conditions

The objective of this simulation experiment is to analyse

ABMA behaviour under a controlled network environment.

Fig. 5 shows time plots of the buffer threshold calculated by

ABMA vs. actual buffer occupancy (upper plot) as well as the

video representation rate selected by ABMA vs. current

download rate (lower plot).

3 We compute µ and  2 from last 50 SDTs, since such a sample size provides

good balance between results estimation stability and estimation duration.
4 We generate 500,000 random values, as such a number corresponds to a
negligible error of estimation of Pr{A(Ω=a}.

y1

 1th

s0 s1 s2

y2

 2th 0th

time

segment
arrival

τ0 -τ0 τ1 -τ1 τ2

8499

Fig. 5: Illustration of ABMA behaviour in controlled environment

We assumed that the download rate changed every 200s.

At the beginning, it went down from 5Mbps until it reached

3Mbps. Then at 550s, we introduced a rate variation

(alternating rate between 4 and 2 Mbps) with the average rate

equal to 3Mbps. Next, the download rate started to increase

until it reached again 5Mbps. In Fig. 5 we can observe that the

representation selected by ABMA (solid line) follows the

download rate changes (dashed line) with a slight shift to the

right. This results from the latency introduced by estimation of

segment arrival process. Moreover, we can see some points

where ABMA selects a representation with a rate higher than

the download rate (e.g. in time equal to 400s), which does not

drain the client’s buffer. This effect comes from the fact that

ABMA exploits SDT which considers the actual size of

downloaded segments which may be different from average

size. Moreover, in 550th second we can observe that ABMA

increased the buffer size to deal with increased download rate

variation. In this case, ABMA did not change representation,

because the average download rate was constant.

B. ABMA analysis in the Internet

In order to study ABMA behaviour in the real-live

environment we have integrated it with the commonly-known

open-source VLC media player due to its popularity and

maturity. Specifically, we have incorporated

AdaptationManager into the VLC DASH plug-in [5].

Furthermore we modified HTTPConnectionManager class of

the plug-in to enable dynamic adaptation and buffer

management. As a result, HTTPConnectionManager object

calls AdaptationManager every time that a media segment is

completely downloaded to determine the media representation

and DASH buffer size.

We performed experiments in the uncontrolled Internet

environment. The video was streamed from the server situated

in Klagenfurt (Austria), through the Internet towards a client

located in Warsaw (Poland). The client, running Linux

Kubuntu 14.04, was connected to campus WiFi IEE 802.11g

access network. Although we managed a number of terminals

connected to the exploited access point, the client experienced

high bandwidth oscillations due to the high density of WiFi

networks in the area. The client downloaded DASH video

movie “Big Buck Bunny” [24] with the 2-second segment

length, in 1080p resolution and five quality levels: 2.1, 2.5,

3.1, 3.5, 3.8 and 4.2 Mbps.

Fig. 6: Illustration of ABMA behaviour in the Internet - experiment A

In Fig. 6 and 7 we present the results from the two

experiments in which the available client’s bandwidth was in

the range of “Big Buck Bunny” representation rates. The

unique difference between both experiments is the network

condition. We performed the tests twice for validating the

implementation in different scenarios. In both test cases the

“Big Buck Bunny” video was streamed simultaneously with

two background 1080p YouTube videos that were played out

on a separate terminal connected to the same access point.

Then, in about 300th second in experiment A (Fig. 6) and 100th

second in experiment B (Fig. 7), the competing terminal began

downloading a 3rd YouTube stream. As a consequence, at this

moment the available bandwidth started to deteriorate.

 In experiment A, ABMA quickly determines the proper

highest quality video representation and retains it until the rate

degradation occurred in 300th
 second. During this time, we

observe the high download rate oscillates between 1 and 12

Mbps. Nevertheless, ABMA keeps video rate constant and the

buffer size almost steady because the available rate between

10th second and 300th second is slightly higher than the rate of

the maximum video quality. In 300th second ABMA gradually

starts to decrease the representation rate following the

bandwidth deterioration caused by the download of the new

stream. Simultaneously, the buffer size is increased to

compensate higher rate variation. The occupancy of the buffer

initially decreases (between 300th and 400th second) due to the

latency of ABMA’s rate estimation method. After the

representation gets stabilised in about 410th second, the buffer

occupancy increases.

Fig. 7: Illustration of ABMA behaviour in the Internet - experiment B

8500

In experiment B, the downloading conditions initially

improve till 100th second. As a consequence, ABMA

successively increases the video quality. After that moment, a

new stream starts being downloaded causing the bandwidth

starvation. ABMA adapts to these changes by reducing the

video quality. Please note that during most of the experiment,

except for the short period when the highest video

representation is picked, the buffer is not fully occupied. This

means that the representation rates picked by ABMA closely

follow the available download rate values.

The presented experiments results show that the selected

representation rate and the buffer occupancy are noticeably

correlated proving that ABMA properly responds to changes in

the downloading conditions. Please note that in both

experiments the buffer occupancy has never reached zero,

resulting in the video being played out smoothly without

rebuffering. As a conclusion, we can state that ABMA properly

adapts video representation and adjust the buffer size in

variable, uncontrolled network conditions.

VI. SUMMARY

The paper presents a novel approach for stream-switching

adaptation that selects the video representation based on the

estimated probability of playout rebuffering. The proposed

Adaptation & Buffer Management Algorithm (ABMA) adjusts

playout buffer size and switches the video representation in

order to download the content with the highest representation

rate and ensure delimited negligible probability of video

rebuffering under dynamic server and network conditions.

Short-term bandwidth variations are diminished by adjustment

of client buffer size, whereas long-term network bandwidth

changes are handled by switching video quality. ABMA

method uses a derived analytical model of the playout buffer

to calculate the rebuffering probability for the available video

representations. The input data for our adaptation algorithm are

segment download time characteristics that merge together the

impact of the variable bit rate of the content, the varying

server load and the fluctuating network conditions.

To the best of our knowledge, the presented proposition is

the first solution for optimization of video playout quality that

assures delimited rebuffering probability. Moreover, we

propose simultaneous adaptation of buffer size and video

quality and we present an analytical model of the

stream-switching client’s buffer.

The behaviour of ABMA method has been evaluated by

both simulation and prototype experiments. The simulation

experiments validate the client’s buffer model on a wide range

of network conditions, and evaluate ABMA properties under

controlled network environment. The experiments with a

developed prototype (implemented as a VLC plug-in) have

confirmed the effectiveness of ABMA and pointed out to its

slight conservative behaviour.

Our further work will focus on the enhancement of SDT

estimation and on the evaluation of ABMA responsiveness in

dynamically changing network conditions. Moreover, we plan

to provide a detailed comparison of performance of ABMA

and other adaptation approaches.

ACKNOWLEDGMENT

This work is part of the DISEDAN project within the

European CHIST-ERA Program. We want to thank the other

project partners for their support and contribution to the ideas

presented here.

REFERENCES

[1] L De Cicco, S Mascolo, V Palmisano “Feedback control for adaptive

live video streaming”, ACM MMSys, 2011

[2] ISO/IEC 23009-2, “Information technology — Dynamic adaptive

streaming over HTTP (DASH)”. 2013

[3] C. Liu, I. Bouazizi, and M. Gabbouj. “Rate adaptation for adaptive http
streaming”, ACM MMSys, 2011

[4] K. Miller, et al., “Adaptation Algorithm for Adaptive Streaming over
HTTP”, Packet Video Workshop, 2012

[5] T. Huang, R. Johari and N. McKeown, “Downton Abbey Without the

Hippcus: Buffer-Based Rate Adaptation for HTTP Video Streaming”,
ACM FhMN, 2013

[6] C.Müller, C.Timmerer “A VLC Media Player Plugin enabling Dynamic
Adaptive Streaming over HTTP”, ACM Multimedia, USA, 2011

[7] W. C. B. Seo and R. Zimmermann, “Efficient video uploading from

mobile devices in support of http streaming”, ACM MMSys, 2012

[8] Q. He, C. Dovrolis, and M. Ammar, “On the predictability of large

transfer tcp throughput”, ACM SIGCOMM, 2005

[9] M. Mirza, J. Sommers, P. Barford, and X. Zhu, “A machine learning

approach to tcp throughput prediction”, ACM SIGMETRICS, 2007

[10] M. Ghobadi, Y. Cheng, A. Jain, and M. Mathis. Trickle: Rate Limiting

YouTube Video Streaming. In Proc. USENIX ATC, 2012

[11] R. K. P. Mok, X. Luo, E. W. W. Chan, and R. K. C. Chang. “QDASH:

A QoE-aware DASH system”, MMSys, 2012

[12] S. Gouache, G. Bichot, A. Bsila, and C. Howson. Distributed and
Adaptive HTTP Streaming. In Proc. ICME, 2011

[13] D. Havey, R. Chertov, and K. Almeroth. Receiver driven rate adaptation
for wireless multimedia applications. In Proc. MMSys, 2012

[14] R. Kuschnig, et al., “Evaluation of http-based request-response streams

for internet video streaming”. Multimedia Systems, 2011

[15] C. Liu, I. Bouazizi, and M. Gabbouj. “Parallel Adaptive HTTP Media

Streaming”, ICCCN, 2011

[16] J. Jiang, V. Sekar and H. Zhang, “Improving Fairness, Efficiency, and

Stability in HTTP-based Adaptive Video Streaming with FESTINE”.

CoNEXT’12, 2012

[17] S. Akhshabi, et al. “What Happens when HTTP Adaptive Streaming

Players Compete for Bandwidth?”, NOSSDAV, 2012

[18] S. Akhshabi, A. Begen, and C. Dovrolis, “An Experimental Evaluation

of Rate Adaptation Algorithms in Adaptive Streaming over HTTP”,

MMSys, 2011

[19] J. Esteban, et al., “Interactions Between HTTP Adaptive Streaming and

TCP”, NOSSDAV, 2012

[20] R. Houdaille and S. Gouache. Shaping http adaptive streams for a better

user experience. In Proc. MMSys, 2012

[21] T.-Y. Huang, et al., “Confused, Timid, and Unstable: Picking a Video

Streaming Rate is Hard”, IMC, 2012

[22] C. Mueller, S. Lederer, J. Poecher, and C. Timmerer, “libdash – An

Open Source Software Library for the MPEG-DASH Standard”, IEEE

International Conference on Multimedia and Expo 2013, USA, 2013

[23] DASH Industry Forum – a reference client implementation:

https://github.com/Dash-Industry-Forum/dash.js

[24] Stefan Lederer, Christopher Müller and Christian Timmerer, “Dynamic

Adaptive Streaming over HTTP Dataset”, ACM MMSys, 2012.

8501

