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Abstract— Most of the current adaptation algorithms assess 

download rate, or trace playout buffer occupancy to adapt video 

representation. We propose a novel approach for switching video 

representation based on the estimated probability of video 

rebuffering. This probability is calculated using an analytical 

model of playout buffer and measured segment download time 

characteristics. The results of simulation experiments and 

prototype trials, carried out in a controlled network environment 

and over the Internet, show that our method efficiently 

accommodates changing network conditions. 

 
Index Terms— DASH, HTTP streaming, media adaptation, 

queueing models, stream switching 

I. INTRODUCTION 

 Video streaming constitutes a significant and fast growing 

part of Internet traffic. As a consequence, we observe a 

proliferation of adaptive streaming solutions designed for 

optimising user experience in time-varying conditions of the 

Internet. Currently, the most commonly investigated and 

commercially applied approach for adaptation is 

stream-switching. It is applicable to HTTP, allows to minimize 

server processing power and it is video codec agnostic [1]. This 

approach is exploited both in closed commercial solutions like 

Adobe Dynamic Streaming , Apple’s HTTP Adaptive Live 

Streaming and Microsoft’s ISS Smooth Streaming, and in open 

HTTP-based protocols like DASH (Dynamic Adaptive 

Streaming over HTTP) [2].   

The main idea behind the stream-switching adaptation is to 

continuously select the highest possible video representation 

quality that ensures smooth playout in the current downloading 

conditions. This selection is performed on-the-fly during video 

playout from a pre-defined discrete set of available video rates 

and with a pre-defined granularity (accordingly to video 

segmentation). In general, the highest quality representation 

should be chosen, the rate of which is lower than the currently 

available download rate (with tolerance corresponding to 

playout buffer length). 

The majority of stream-switching solutions select the video 

representation the rate of which best matches the estimated 

download bandwidth, e.g. [3], [4]. However this approach is 

not optimal as it may lead to an overly aggressive or an overly 

conservative adaptation when the download rate significantly 

varies [5]. We argue that in order to optimise user experience, 

we should select the best possible representation that assures a 

delimited and negligible probability of video freezing during 

playout (caused by video rebuffering). 

In this paper, we propose a novel approach for 

stream-switching adaptation which aims at assuring probability 

of video rebuffering to sustain under given negligible threshold 

while simultaneously optimising the video representation 

quality. Our Adaptation & Buffer Management Algorithm 

(ABMA) is an example of this approach. Based on the 

proposed model of the client’s buffer, ABMA estimates the 

probability of rebuffering for the available video 

representations and selects the highest quality video 

representation which satisfies the assumed threshold. 

Moreover, it adjusts the buffer size to compensate for the 

download rate oscillations. The input data for our adaptation 

algorithm are the segment download time characteristics (SDT) 

measured during playout.  

The paper structure is the following. After the analysis of 

stream-switching solutions (section II), we present the model 

of the client’s buffer jointly with its extensive validation 

(section III). Section IV presents the details of the proposed 

ABMA method. We have implemented the ABMA mechanism 

and integrated it with VLC DASH plug-in [6]. The results of 

experiments performed in controlled network conditions and 

over the Internet are described in Section V. Finally, Section 

VI shortly summarizes the paper and gives an outline of further 

works. 

II. RELATED WORK  

Handling variable network conditions is one of the most 

challenging issues of the research on stream-switching adaptive 

protocols. The application detects changes of network 

conditions by measuring the download rate or by observing the 

variations of the playout buffer occupancy. The latter approach 

is relatively new and rarely covered in literature. Only Huang, 

Johari and McKeown proposed this approach for introducing a 

new adaptation algorithm [5]. 

In contrast, there are many papers available about the 

bandwidth estimation for video adaptation. The approaches 

have evolved and refined successively. In [7], Seo and 

Zimmermann proposed to estimate the bandwidth based on the 

measurements taken in a short period of time (a few segments) 

instead of measurements of the whole streaming in order to 

reduce the influence of the network variation on the 

representation selection. Along the same line, the authors of [8] 
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and [9] proposed history based and machine-learning-based 

approaches for TCP throughput prediction. 

Other studies were focused on reducing the network 

bandwidth variation on the client’s side. For example, some 

changes in TCP [10] and additional stability techniques [11], 

[3], [4] were proposed, respectively, to avoid bursts and to 

increase the stability in the available bandwidth. Moreover, the 

use of multiple connections was studied for improving the 

throughput and reducing the variation of the available 

bandwidth in the network [12-15]. 

The research undertaken in the last two years focuses on the 

design of robust adaptive video algorithms for multiple 

players competing at bottleneck links [16-20]. This 

competition may provoke a biased feedback loop effect 

causing high bandwidth variations [21]. Moreover, player 

selecting the higher quality representation observes the higher 

bandwidth [16].  

DASH [2] is an open standard which is gaining the 

principal place in the market of stream-switching protocols. 

The majority of DASH implementations use fixed buffer size 

(e.g., QTSamplePlayer, which uses libdash3.0 library [22], 

and VLC player with DASH plug-in [6]). The exception is 

dash.js [23], which sets the buffer size according to content 

duration and the Round Trip Delay. Nevertheless, the buffer 

size is not adjusted taking into account changes of download 

rate. 

We designed ABMA to simultaneously adapt to both short 

and long-term network bandwidth variations. Short-term 

variations are diminished by adjusting the length of client 

buffer to current downloading conditions. At the same time, 

long-term network bandwidth changes are handled by 

switching video quality. This double adaptation is another 

novelty in our proposition. 

III. MODEL OF CLIENT’S BUFFER   

The content downloading process in stream-switching 

adaptive systems involves three interacting elements: end 

user’s player application with stream-switching client, a 

content server and a network. The stream-switching client 

selects a video representation, requests new video segments 

and downloads them over TCP until there is space in the 

client’s buffer. Simultaneously, the player application fetches 

data from the client’s buffer into its decoding buffer at 

variable rate following decoding/playout process.  

In order to dimension the client’s buffer, two partially 

opposite requirements should be taken into account. On one 

hand long buffer inhibits correct adaptation and, on the other 

hand, too short buffer may provoke rebuffering during 

playout. Therefore, we aim to derive the minimum size of the 

client’s buffer that will ensure that the probability of 

rebuffering during playout is below the assumed threshold .  

A. The model of client’s buffer 

The system state can be rendered by the number of 

segments waiting in the client’s buffer or played out with the 

number of segments being downloaded. The total number of 

segments in the system is determined by the client’s buffer 

size increased by one segment being in service because the 

client requests a new segment from the server only if there is 

space available in the client’s buffer. When the client’s buffer 

becomes full, the content downloading process is deferred 

until the playout of the current segment is finished. After 

downloading has resumed, the next segment arrives to the 

client buffer at the Round Trip Delay (RTD) time. The RTD is 

the time elapsing between the moment of segment requesting 

and its receiving. Taking into account the fact that the system 

state does not change during deferring periods, we can model 

our system by the GI/D/1/K queuing system with a generic 

independent random arrival process, deterministic segment 

service time (Ω) and finite buffer space, as presented in Fig. 1.  

Fig. 1: The model of client buffer 

We model the segment arrival process by a discrete random 

variable A(Ω), which describes the number of segment arrivals 

observed during the service time Ω. This random variable 

(r.v.) reflects the compound characteristics of the content 

download process by merging together the impact of the 

variable segment size, the varying segment transmission delay 

on the server and the fluctuating network conditions. In our 

model, we assume that the number of segments arriving in 

consecutive time slots Ω is independent. This assumption is 

satisfied for memoryless arrival processes, as e.g. Poissonian. 

For other types of processes, the number of arrivals in a given 

time slot Ω time is impacted by the residual Segment 

Download Time (SDT)1 remaining from the previous time 

slot. The exact estimation of the residual time distribution 

seems unfeasible because r.v. A(Ω) is not known a priori in 

the system operating over the Internet. Fortunately, we may 

neglect the impact of the residual SDT because it would lead 

to underestimation of the arrival process (as long as SDT is a 

non-negative r.v.). As a consequence, we expect that the 

buffer size calculated by our model may be overestimated.   

The segments stored in the client’s buffer are served in 

constant time intervals Ω, which correspond to the segment 

playout time. The finite buffer space directly corresponds to 

the limited number of segments being in progress in the 

original stream-switching adaptive system.  

In our approach, we observe the system immediately after a 

segment has finished its service (service time equal to Ω). In 

these time instants, the system state is expressed by the 

number of segments left behind just served customer. We 

denote the steady state probabilities of the system by P0, P1,…, 

PK. Note that the probability P0 is directly related to the 

rebuffering events, because it corresponds to the situations 

when there is no segment for playing out. The probability PK 

is equal to  zero because we observe the system just after a 

                                                           
1 SDT is the time that a segment takes to be received by the client (i.e. time 

interval in which the client receives all the data packets carrying a segment). 
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segment has finished service. Our analysis follows the 

imbedded Markov chain approach, where the probabilities of 

particular system states P0, P1,…, PK-1 can be formally written 

as the set of equations presented in (1).  Pr{A(Ω)=a} is the 

distribution of r.v. A(Ω), i.e., the probability that during time 

Ω, exactly number a of new segments arrives to the client’s 

buffer.  

{
  
 

  
 
𝑃0 = (𝑃0 + 𝑃1) × Pr{𝐴(𝛺) = 0},     

⋮                                                   
𝑃𝑛 = 𝑃0 × Pr{𝐴(𝛺) = 𝑛} +              

       +∑ 𝑃𝑛+1−𝑎 ×𝑛
𝑎=0 Pr{𝐴(Ω) = 𝑎}, 𝑛 = 1,… , 𝐾 − 2

∑ 𝑃𝑗
𝐾

𝑗=0
= 1.                                          

 

The first equation corresponds to the situation where no 

segment is left in the client’s buffer just after the completion 

of the service of the previous segment. This happens when the 

buffer has been empty or has held just one segment and no 

segment has arrived during Ω service time. The second row 

describes a set of K-2 equations corresponding to n-th 

segments remaining in the client’s buffer for n=1,…, K-2. The 

last equation is a normalisation condition.  

The solution of the equations (1) allows to calculate the 

rebuffering probability for a given size of the client’s buffer. 

However, our objective is to derive the minimum size of the 

client buffer that will ensure that the probability of rebuffering 

during playout is below the assumed threshold . Therefore, 

we apply a binary search procedure to find the required buffer 

size.  

The value of K calculated in our model corresponds to an 

open loop system, while the original stream-switching 

adaptive system requested segments from the content server 

arrive after RTD. Therefore, we need to increase the buffer 

size by the number of segments required to compensate the 

latency introduced by the feedback control loop between the 

client and server. So, the final value of the buffer size B is 

given by (2): 

 𝐵 = 𝐾 + ⌈
𝑅𝑇𝐷

Ω
⌉ 

B. Validation experiments 

In order to validate the model of the client buffer, we simulate 

the content downloading system under stationary, controlled 

network conditions and compare the obtained rebuffering 

probability with the value calculated by our model (P0). In both 

cases, we assume the same buffer size, which was fixed to 

guarantee the rebuffering probability at the level below 10-4 

threshold. Moreover, we consider essentially different 

distributions of SDT to evaluate accuracy of the model. Please 

note that it is difficult to assess the actual distribution of SDT 

because it depends both on the video characteristics (related to 

different video coding and content dynamic) and on the 

network and server conditions. Therefore, we use two distinct 

distributions: exponential distribution, which is memoryless 

and characterises high variation; and folded normal distribution 

with coefficient of variation (CV) between 1.0 and 0.5, which 

reflects relatively smooth content downloading conditions. 

Moreover, we assume segment’s playout time (Ω) equal to 2s. 

To achieve high reliability of results, each simulation run 

covered 5×108 segments and was repeated 20 times with an 

independent run-up. The details of the assumed SDT 

characteristics and buffer size as well as the obtained 

rebuffering probabilities are presented in Table 1.  

Table 1: Validation of buffer model under different segment download time 

characteristics 

SDT characteristics Buffer 

size [seg.] 

Prob. of video rebuffering 

[x10-5 ] 

Dist. Mean [s] CV Calculation Simulation 

E
x
p
o

-

n
en

ti
a

l 

1.33 

1.0 

10 5.66  5.690.04 

1.50 14 5.64 5.620.04 

1.80 33 8.71 8.740.13 

F
o
ld

ed
 N

o
rm

al
 

1.33 

1.00 9 6.54 1.050.03 

0.75 7 5.65 1.720.03 

0.50 4 3.75 0.330.01 

1.5 

 

1.00 14 5.52 0.830.21 

0.75 10 5.86 1.560.07 

0.50 6 3.26 1.710.03 

1.8 

1.00 37 8.93 0.740.047 

0.75 24 9.79 3.380.066 

0.50 14 9.89 0.750.03 

The results show that the proposed model yields the exact 

results for exponentially distributed SDT. For the folded 

normal distribution of SDT, P0 values obtained from 

simulations are lower than calculated by our model. This effect 

stems from the fact that we neglect the impact of residual time 

in segment arrival process. As a consequence, the distribution 

of r.v. A(Ω) is underestimated and our model overestimates the 

required buffer size. Anyway, this feature is acceptable as it 

leads to conservative buffer dimensioning rules estimating the 

upper limit of K. Moreover, we can observe that the buffer size 

increases together with the increase in the value of CV. This 

effect results from the fact that the system needs a larger buffer 

space to compensate increasing SDT variations. 

C. Evaluation of buffer management  

The objective of this experiment is to evaluate the 

relationship between the SDT characteristics and the required 

buffer size computed by the buffer model. Therefore, for 

distinct distributions of SDT (exponential and normal), we use 

our model to calculate the buffer size ensuring that the 

probability of video rebuffering does not exceed 10-4. In order 

to understand better the impact of the mean value of SDT, we 

use the over-rate factor (ovrate), which normalizes the mean 

SDT value to the segment duration time Ω as indicated in (3):  

 ovrate = (
Ω

mean SDT
− 1) 

Fig. 2 presents the relation between the required buffer size 

and the SDT characteristics expressed by the over-rate factor. 

The results show that a large buffer size is required when the 

segment download rate is similar to the video playout rate and 

when the variance of SDT is high (high value of CV). The 

buffer size can be reduced by increasing ovrate factor, i.e., by 

switching the stream to a lower quality representation. 

Moreover, we can observe that the system may become 

unstable when the ovrate factor decreases below 15%. In these 
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conditions even small fluctuations of ovrate cause significant 

changes in the buffer size. Therefore, we have designed an 

adaptation logic directed to keep the stream-switching client in 

the overrate state (ovrate between 25-75%) to make it robust to 

download rate changes and uncertainty of SDT estimation. 

Fig. 2: Buffer size as a function of ovrate factor under different values of CV 

IV. ADAPTATION & BUFFER MANAGEMENT ALGORITHM  

We propose the Adaptation & Buffer Management 

Algorithm (ABMA) as an example to prove that adaptation 

based on rebuffering probability is feasible. ABMA adapts the 

video representation quality and buffer size to the current 

downloading conditions based on the queuing model presented 

in Section III.A. It exploits SDT and RTD characteristics 

measured by the DASH client. Each SDT value results from 

the concatenation of the downloaded segment’s size with the 

current network and server loads. A sample of N recently 

measured SDT probes is used to estimate distribution of r.v. 

A(Ω). Such sampling introduces the estimation delay that 

needs to be compensated by DASH buffer in the case of a 

non-stationary downloading conditions (non-stationary time 

series of SDT values). The maximum value of this latency is N 

times higher than RTD (when N segments are sequentially 

requested and downloaded). Nevertheless, since downloading 

conditions rarely change rapidly in a non-stationary manner 

(with respect to N), usually a smaller compensation is enough. 

Consequently, equation (2) is superseded by eq. (4) in order to 

accommodate the number of segments required to compensate 

estimation latency. 

 B = K + ⌈γ × N ×
RTD

Ω
⌉ ,         γ ∈<

1

N
,
N+1

N
> 

The parameter 𝛾 reflects nonstationarity of the segment arrival 

process (the lower and upper bounds of 𝛾 correspond 

respectively to the stationary and “highly” non-stationary 

conditions). Our preliminary studies showed that the value of 

0.3 is sufficient for a wide variety of networks, including Wi-Fi 

IEEE 802.11 networks. 

A. ABMA, assumptions and procedure 

The aim of ABMA is to determine, from the set R of the 

available representation rates, the highest possible media 

representation rate rx and the corresponding client buffer size 

Bx ensuring the video rebuffering probability 𝑃𝑥
0(𝐵𝑥) to be less 

than the given threshold . We assume that DASH buffer size 

is a priori limited to a user-defined value M (e.g. due to the 

terminal’s memory capacity or the maximum acceptable 

adaptation delay). As a consequence, the aim of ABMA is to 

find the highest representation as in (5): 

 max (rx ∈ R): Px
0(Bx) < ε and Bx < M (5) 

 

Fig. 3: Simplified flowchart of ABMA 

Fig. 3 presents the main steps of the searching procedure. 

Having measured new SDT and RTD probes (step S1 in 

Fig. 3), ABMA updates measurement data (step S2) and 

calculates the buffer size 𝐵𝑖  for the most recently determined 

representation (ix), step S3. The 𝐵𝑖  value is computed under 

the condition 𝑃𝑖
0(𝐵𝑖) < ε (this is described in the following 

paragraphs). Next in S4, ABMA checks if the determined 

value of the buffer size is legitimate. If not, the representation 

is sequentially decremented2 until 𝐵𝑖  gets legitimate, steps 

S5b, S6b. Otherwise, ABMA sequentially increments2 the 

representation under the condition that the corresponding 

buffer size is lower than (1 − β) × M. The anti-oscillation 

parameter β is introduced in order to avoid representation 

swinging. It balances the frequency of representation 

switching against playout quality (its tuning is beyond the 

scope of this paper). 

We set the size of the client’s buffer according to the 

calculated value 𝐵𝑥 to reduce the adaptation delay and 

resource usage comparing to buffer size fixed to M. ABMA 

determines the representation of the next segment to be 

requested and the current buffer size every time a new 

segment is downloaded from the server. At these moments, 

DASH management logic measures the current values of RTD 

and SDT. Nevertheless, if needed, the calculation may be 

performed more rarely to limit power consumption (this issue 

is not in the scope of our paper).  

The calculation of the minimum buffer size 𝐵𝑖  (steps S3, 

S5a/b in Fig. 3), for each representation i, is based on the 

estimated distribution r.v. Ai(Ω), and RTD. Since the equations 

in (1) and (4) allow to compute the rebuffering probability for 

arbitrary buffer size, ABMA exploits binary-search-like 

                                                           
2 By incrementing/decrementing representation we mean selecting next 
representation with closest higher/lower representation rate. 
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algorithm in order to find its minimum value ensuring  

(i.e. 𝑃𝑖
0(𝑏) < ε for 𝑏 ≥ 𝐵𝑖 , 𝑃𝑖

0(𝑏) ≥ ε for 𝑏 < 𝐵𝑖).  
The RTD value is assessed by means of Exponential 

Weighted Moving Average (EWMA) algorithm based on the 

measured RTD probes (S2 in Fig. 3). The distribution of r.v. 

Ai(Ω), for each representation i, is estimated based on the 

measured SDT probes. Since each SDT probe corresponds to a 

representation of the downloaded segment, to estimate Ai(Ω) 

for other representations we scale the measured SDT values by 

quotient of rates of the considered representations 

(𝑠𝑑𝑡𝑗 = 𝑟𝑗/𝑟𝑖 × 𝑠𝑑𝑡𝑖 , 𝑠𝑑𝑡𝑖 denotes SDT probe value 

representation i). Such estimation introduces negligible error 

as long as the set of probes is large enough to get averaging 

effect.  

We may express the distribution Pr{A(Ω)=a} by equation 

(6) if we assume that: 1) SDTs are described by an 

independent and identically distributed r.v. S, 2) 𝑠 > 0 for 𝑠 ⊂
𝑆, and 3) the residual time from the previous Ω period is 

described by r.v. Y. The independency (of S) assumption is 

justified since SDTs are barely correlated being relatively long 

in comparison with the packet download times and, in 

addition, the segments have variable sizes and the size is not 

correlated between two different segments.  

Pr{𝐴(𝛺) = 𝑎} =

{
 
 

 
 Pr{𝑌 > Ω} ,                                                          𝑎 = 0

∫ Pr {𝑌 + 𝑆 +⋯+ 𝑆⏟      
𝑎−1

Ω

0

= 𝜏} × Pr{𝑆 > Ω − 𝜏} 𝑑𝜏,

                                                                    𝑎 = 1,… ,∞

 (6) 

The first equation in (6) corresponds to the situation when 

the residual time is greater than Ω, so no segment arrives in 

time Ω. The following equations describe the situation when 

exactly a segments arrive in time Ω. Considering each Ω, the 

first segment arrives after the residual time defined by r.v. Y. 

The next a-1 segments must arrive within the current slot, 

while the last segment must arrive after the end of the slot. 

These segments arrive following r.v. S. After some algebra, 

we derive the simplified formula (7) for Pr{A(Ω)=a}.  

Pr{𝐴(Ω) = 𝑎} = {
1 − 𝐹𝑌(Ω) ,                                                   𝑎 = 0

𝐹𝑌+𝑆+...+𝑆⏟    
𝑎

(Ω) − 𝐹𝑌+𝑆+...+𝑆⏟    
𝑎+1

(Ω) ,     𝑎 = 1,… ,∞  (7) 

where FY denotes the cumulative distribution function of Y.  

In order to derive FY, let us consider an exemplary 

realization of segment arrival process presented in Fig. 4.  

  
Fig. 4: Illustration of segment arrival process 

Random variable Y equals y if and only if the sum of the 

residual time coming from the previous slot Ω and the SDTs 

of all segments downloaded in the current slot Ω, equal τ, 

whereas the SDT of the next segment will equal Ω-τ+y. 

Therefore, FY is the integral (over all possible values of τ and 

y) of the sum of probabilities of all events corresponding to 

segment arrivals starting from a single segment, up to an 

infinite number of segments, as presented in (8):  

FY(y) =

         

∫ ∫ ∑ Pr {Y + S +⋯+ S⏟      
a−1

= τ} × Pr{S = Ω − τ + t}∞
a=1

Ω

0
dτdt

y

0

                                                                  


In the case of r.v. S having memoryless property (i.e. 

exponential distribution), formulas (6) and (7) are easy to 

calculate. Nevertheless, since each SDT is composed of a 

number of packet download times, r.v. S tends to a normal 

distribution. As a consequence, we numerically calculate 

Pr{A(Ω)=a}. Specifically, the management logic performs the 

following steps: 1) it computes sample mean µ and variance 

2 of the measured SDTs3, 2) it assumes that SDT is described 

by normal r.v. X~(µ, 2) and generates a number4 of random 

values according to S: s1,…,sn, 3) it calculates consecutive 

values of A(Ω) by counting numbers of s1,…,sn falling into 

consecutive Ω slots, and 4) computes Pr{A(Ω)=a} by dividing 

the number of occurrences of A(Ω)=a by the total number of 

values of A(Ω). 

V. PROTOTYPE AND EXPERIMENTS 

We developed a prototype of ABMA to prove the 

feasibility of rebuffering-probability-based approach. The 

prototype was implemented in C++ as a piece of software that 

can be integrated into a variety of video applications or other 

solutions. Moreover we integrated it with 1) a developed 

simulator of stream-switching system in order to easily analyse 

the properties of ABMA, see section V.A, and 2) a popular 

VLC media player to test ABMA’s behaviour in the real-life 

Internet environment, see section V.B. The 

AdaptationManager class implements ABMA procedure, 

presented in Fig. 3, and defines methods responsible for: i) 

addition of the measured SDT and RTD probes, ii) invocation 

of  ABMA procedure, and finally iii) request for optimal 

representation rate and buffer size. The prototype’s source code 

is publicly available on the web page: 

http://www.nit.eu/offer/research-projects-products/abma 

For all experiments described in the following subsections 

we used the default setting of parameters, explicitly: target 

video rebuffering probability 𝜀 equal to 10-4, SDT sample size 

N equal to 50 probes, nonstationarity factor 𝛾 equal to 0.3, and 

anti-oscillation factor 𝛽 equal to 0.9. We performed the 

experimental studies to verify if ABMA: 1) selects optimal 

representation, 2) is able to compensate for the variability of 

SDT, 3) responds properly to changes of downloading 

conditions, and 4) prevents buffer depletion during content 

playout. 

A. ABMA analysis in controlled simulated conditions 

The objective of this simulation experiment is to analyse 

ABMA behaviour under a controlled network environment. 

Fig. 5 shows time plots of the buffer threshold calculated by 

ABMA vs. actual buffer occupancy (upper plot) as well as the 

video representation rate selected by ABMA vs. current 

download rate (lower plot).  

                                                           
3 We compute µ and  2 from last 50 SDTs, since such a sample size provides 

good balance between results estimation stability and estimation duration. 
4 We generate 500,000 random values, as such a number corresponds to a 
negligible error of estimation of Pr{A(Ω=a}. 
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Fig. 5: Illustration of ABMA behaviour in controlled environment 

We assumed that the download rate changed every 200s. 

At the beginning, it went down from 5Mbps until it reached 

3Mbps. Then at 550s, we introduced a rate variation 

(alternating rate between 4 and 2 Mbps) with the average rate 

equal to 3Mbps. Next, the download rate started to increase 

until it reached again 5Mbps. In Fig. 5 we can observe that the 

representation selected by ABMA (solid line) follows the 

download rate changes (dashed line) with a slight shift to the 

right. This results from the latency introduced by estimation of 

segment arrival process. Moreover, we can see some points 

where ABMA selects a representation with a rate higher than 

the download rate (e.g. in time equal to 400s), which does not 

drain the client’s buffer. This effect comes from the fact that 

ABMA exploits SDT which considers the actual size of 

downloaded segments which may be different from average 

size. Moreover, in 550th second we can observe that ABMA 

increased the buffer size to deal with increased download rate 

variation. In this case, ABMA did not change representation, 

because the average download rate was constant. 

B. ABMA analysis in the Internet 

In order to study ABMA behaviour in the real-live 

environment we have integrated it with the commonly-known 

open-source VLC media player due to its popularity and 

maturity. Specifically, we have incorporated 

AdaptationManager into the VLC DASH plug-in [5]. 

Furthermore we modified HTTPConnectionManager class of 

the plug-in to enable dynamic adaptation and buffer 

management. As a result, HTTPConnectionManager object 

calls AdaptationManager every time that a media segment is 

completely downloaded to determine the media representation 

and DASH buffer size.  

We performed experiments in the uncontrolled Internet 

environment. The video was streamed from the server situated 

in Klagenfurt (Austria), through the Internet towards a client 

located in Warsaw (Poland). The client, running Linux 

Kubuntu 14.04, was connected to campus WiFi IEE 802.11g 

access network. Although we managed a number of terminals 

connected to the exploited access point, the client experienced 

high bandwidth oscillations due to the high density of WiFi 

networks in the area. The client downloaded DASH video 

movie “Big Buck Bunny” [24] with the 2-second segment 

length, in 1080p resolution and five quality levels: 2.1, 2.5, 

3.1, 3.5, 3.8 and 4.2 Mbps.  

 
Fig. 6: Illustration of ABMA behaviour in the Internet - experiment A 

In Fig. 6 and 7 we present the results from the two 

experiments in which the available client’s bandwidth was in 

the range of “Big Buck Bunny” representation rates. The 

unique difference between both experiments is the network 

condition. We performed the tests twice for validating the 

implementation in different scenarios. In both test cases the 

“Big Buck Bunny” video was streamed simultaneously with 

two background 1080p YouTube videos that were played out 

on a separate terminal connected to the same access point. 

Then, in about 300th second in experiment A (Fig. 6) and 100th 

second in experiment B (Fig. 7), the competing terminal began 

downloading a 3rd YouTube stream. As a consequence, at this 

moment the available bandwidth started to deteriorate. 

 In experiment A, ABMA quickly determines the proper 

highest quality video representation and retains it until the rate 

degradation occurred in 300th
 second. During this time, we 

observe the high download rate oscillates between 1 and 12 

Mbps. Nevertheless, ABMA keeps video rate constant and the 

buffer size almost steady because the available rate between 

10th second and 300th second is slightly higher than the rate of 

the maximum video quality. In 300th second ABMA gradually 

starts to decrease the representation rate following the 

bandwidth deterioration caused by the download of the new 

stream. Simultaneously, the buffer size is increased to 

compensate higher rate variation. The occupancy of the buffer 

initially decreases (between 300th and 400th second) due to the 

latency of ABMA’s rate estimation method. After the 

representation gets stabilised in about 410th second, the buffer 

occupancy increases. 

 
Fig. 7: Illustration of ABMA behaviour in the Internet - experiment B 
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In experiment B, the downloading conditions initially 

improve till 100th second. As a consequence, ABMA 

successively increases the video quality. After that moment, a 

new stream starts being downloaded causing the bandwidth 

starvation. ABMA adapts to these changes by reducing the 

video quality. Please note that during most of the experiment, 

except for the short period when the highest video 

representation is picked, the buffer is not fully occupied. This 

means that the representation rates picked by ABMA closely 

follow the available download rate values. 

The presented experiments results show that the selected 

representation rate and the buffer occupancy are noticeably 

correlated proving that ABMA properly responds to changes in 

the downloading conditions. Please note that in both 

experiments the buffer occupancy has never reached zero, 

resulting in the video being played out smoothly without 

rebuffering. As a conclusion, we can state that ABMA properly 

adapts video representation and adjust the buffer size in 

variable, uncontrolled network conditions. 

VI. SUMMARY 

The paper presents a novel approach for stream-switching 

adaptation that selects the video representation based on the 

estimated probability of playout rebuffering. The proposed 

Adaptation & Buffer Management Algorithm (ABMA) adjusts 

playout buffer size and switches the video representation in 

order to download the content with the highest representation 

rate and ensure delimited negligible probability of video 

rebuffering under dynamic server and network conditions. 

Short-term bandwidth variations are diminished by adjustment 

of client buffer size, whereas long-term network bandwidth 

changes are handled by switching video quality. ABMA 

method uses a derived analytical model of the playout buffer 

to calculate the rebuffering probability for the available video 

representations. The input data for our adaptation algorithm are 

segment download time characteristics that merge together the 

impact of the variable bit rate of the content, the varying 

server load and the fluctuating network conditions.  

To the best of our knowledge, the presented proposition is 

the first solution for optimization of video playout quality that 

assures delimited rebuffering probability. Moreover, we 

propose simultaneous adaptation of buffer size and video 

quality and we present an analytical model of the 

stream-switching client’s buffer. 

The behaviour of ABMA method has been evaluated by 

both simulation and prototype experiments. The simulation 

experiments validate the client’s buffer model on a wide range 

of network conditions, and evaluate ABMA properties under 

controlled network environment. The experiments with a 

developed prototype (implemented as a VLC plug-in) have 

confirmed the effectiveness of ABMA and pointed out to its 

slight conservative behaviour.  

Our further work will focus on the enhancement of SDT 

estimation and on the evaluation of ABMA responsiveness in 

dynamically changing network conditions. Moreover, we plan 

to provide a detailed comparison of performance of ABMA 

and other adaptation approaches. 
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